CALCULUS OF VARIATIONS AND OPTIMIZATION METHODS

Introduction

Lecture 2. Minimization of functions
We consider the standard method of finding the minimum of the function. It is the stationary condition. We analyze also relations between the problem of the function minimization and the stationary condition. These results can be extended without any difficulties to the case of the functions with many variables. 

2.1. Stationary condition
Consider the easiest extremum problem.

Problem 2.1. Minimize the function f on the set of real numbers.

The solution of this problem can be found by the following result.

Theorem 2.1. If the differentiable function f has the minimum at the point x, then it satisfies the equality
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Proof. Let x be a point of the minimum of the function f. Then we have the inequality
f(y) (  f(x) (y.
Therefore,
f(x+h) (  f(x) (h.

Using the Lagrange formula, we get 
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where ((h)/h(0 as h(0. We obtain
                                                     f '(x)h + ((h) ( 0 (h.                                                (2.2)

Suppose h>0. Then we get
f '(x) + ((h)/h ( 0. 

After passing to the limit as h(0 we obtain 

                                                                f '(x) ( 0.                                                       (2.3)

By (2.2) with h<0, we have 

f '(x) + ((h)/h ( 0, 

After passing to the limit as h(0 we get 

                                                                 f '(x) ( 0.                                                         (2.4)

Using the inequalities (2.3), (2.4), we have the equality (2.1). (
The formula (2.1) is the equation with respect to the unknown value x.

Definition 2.1. The equality (2.1) is called the stationary condition or the Fermat condition; and its solution is called the stationary point of the function f.
	Question: What kind of the equations has the stationary condition?


The stationary condition is the algebraic equation with respect to the known points of the minimum.

	Conclusion: The problem of the function minimization 
can be transformed to the algebraic equation.


Consider examples.

2.2. Maximization of the flight of the body

We had the problem of the maximization of the body flight (see Introduction). We choose the angle of the throw such that the length of its flight will be maximal. The dependence of the length from the angle is determined by the formula 
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where ( is the unknown angle, the velocity v is given, and g is the constant gravitational acceleration. Now we try to use the stationary condition for solving our problem.

	Question: How we can transform the maximization problem to the minimization one?


Our maximization problem can be transformed to the minimization problem by the change of the sign. Then we have the problem of minimization for the function
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Find the derivative
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Using the stationary condition, we get the algebraic equation
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with respect to the parameter (. This equation has the infinite set of the solutions
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where k is an arbitrary integer number. However, the angle belongs to the interval (0,(/2). Therefore, the optimal angle is (/4 or 450. This is the classic result of mechanics. 

	Conclusion: We found the solution of the given practical problem 
with using the stationary condition.


Consider additional examples.

2.3. Examples

We consider examples of the application of the stationary condition.

Example 2.1. Consider the function 
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 The equation (2.1) can be transformed to 
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 Its unique solution 
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 is the unique point of minimum for the function f1 (see Figure 2.1). (
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Figure 2.1. Unique stationary point is the point of the absolute minimum.

	Conclusion: Using the stationary condition, 
we find the unique minimum of the given function.


Example 2.2. Consider the function 
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 Determine the stationary condition 
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 Find three stationary points 
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 Calculate 
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 The first solution is the point of the absolute minimum of 
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, the second solution is the point of the local maximum, and the third solution is the point of the local minimum (see Figure 2.2). (
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x 1   is   the   absolute   minimum   x 2   is   the   local maximum   x 3   is   the   local   minimum    

x 2  
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Figure 2.2. The stationary points of the function f2.
We have new definitions as results of the considered example. 

Definition 2.2 (see Figure 2.3). The function f has the local minimum (local maximum) in the point x, if there exists a neighbourhood O of this point such that 
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 If the equality is true here only for 
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 then we have the strict local minimum (the strict local maximum). If these inequalities are true for all y, then x is the point of the absolute minimum (the absolute maximum).
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Figure 2.3. The classes of the extremum.

Let us consider an extremum problem P and a condition Q. 

Definition 2.3 (see Figure 2.4). The condition Q is called the necessary condition of the extremum if it is true for all solution of the Problem P. This is the sufficient condition of the extremum if all solution of Q is the solution of the problem P.  
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Figure 2.4. The relations between the set U0 of the solutions of the extremum problem 
and the set U* of the solutions of the extremum condition.

	Conclusion: The stationary condition 
is the necessary condition of the local extremum.


	Question: Why the stationary condition cannot distinguish 
the minimum and the maximum of the function?


If we have the maximization problem, then we obtain the inequality (2.2) with change of the sign. Therefore, it is necessary to change the sign at the inequalities (2.3) and (2.4). Then both inequality are true again, and we obtain the stationary condition (2.1).
	Question: Why the stationary condition cannot distinguish 
the local minimum and the absolute minimum of the function?


Suppose x is the point of the local minimum of the function f. Therefore, the inequality (2.2) is true for the small enough values of the parameter h only. Then we can repeat all our transformation, because we passed to the limit there as h tends to zero.

Now we continue the consideration of examples.

Example 2.3. Consider the function 
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 We find three stationary point 
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 The second point is the point of the local maximum. The first and the third points are the points of the absolute extremum. Thus, this problem has two solutions (see Figure 2.5). (
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Figure 2.5. The function has two points of the minimum.

	Conclusion: Minimization problems can have many solutions.


Each solution of the minimization problem satisfies the stationary condition, because this is the point of the local minimum of the given function. 

Example 2.4. Consider the function 
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 The stationary condition transforms to the equality 
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 This equation is not solvable. This problem is unsolvable too (see Figure 2.6). However, the sets of the solutions of the problem and the set of the stationary points are equal (empty). Then we have necessary and sufficient conditions of optimality. (
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Figure 2.6. The stationary points for the unsolvable problem are absent.

	Conclusion: Minimization problems can be unsolvable.


The set of the stationary points for the considered example is empty, because we do not have any points of minimum for our function. 
Example 2.5. Consider the function 
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 The necessary condition of the optimality here has the unique solution 
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 that is not the point of the minimum (see Figure 2.7). The problem is unsolvable here. Therefore, the stationary condition is only sufficient. (
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Figure 2.7. The unique stationary point is not the point of the minimum.

	Question: Why the stationary condition is true here 
although x is not the point of the local minimum?


The derivative of the function at the concrete point characterizes the velocity of the function change there. Now we consider the function with the inflection point. The derivative of the function there is equal to zero. 
	Conclusion: The stationary point may not be even 
the point of the local minimum.


Example 2.6. Consider the function 
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 This is not differentiable function (see Figure 2.7). Therefore, the stationary condition is not applicable here. Therefore, it is necessary to use other methods for solving this problem. (
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Figure 2.8. The stationary condition is not applicable 
for the function 
that is not differentiable. 
	Conclusion: The stationary condition is not always applicable.


2.4. Minimization of the function of many variables

Extend our results to the functions with many variables. Let us consider the function 
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Problem 2.2. Minimize the function f of many variables.
Theorem 2.2. If the differentiable function 
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 has the minimum at the point 
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 then it satisfies the equalities
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Proof. If the vector 
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 is a point of the minimum of the function f, then we have the inequality 
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 for all n-dimensional vector y. Determine 
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 where ( is a number, and 
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 is an arbitrary vector. Determine the function ( of one variable ( by the equality
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Therefore, this function has the minimum at the point 
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 Then the derivative of ( at this point is equal to zero because of the stationary condition. Calculate the derivative
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Using stationary, we get the equality
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with arbitrary vector h. Let the index i is fixed. Determine the components of the vector h by the formula 
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 Therefore, the previous formula transforms to the equality (2.5). (
	Conclusion: The minimization problem of the function of n variables 
is transformed to the system of n nonlinear algebraic equation.


Remark. We transform the minimization problem for the function of many variable to the minimization problem for the function of unique variable by choose of the function (. We shell use this idea at the first part of course for analysis of the minimization problems for the different functionals. This is the general technique of calculus the variations.
Outcome

· The problem of minimization of the function can be transformed to the algebraic equation; this is the stationary condition.
· The problem of minimization of the function of many variables can be transformed to the system of algebraic equations with the same order. 

· The stationary conditions is the necessary condition of minimum, namely the point of minimum of the function satisfies this relation, however maybe the solution of the stationary condition is not the point of minimum of the function.

· The stationary condition is the necessary condition of the local extremum in reality; particularly it can be the point of maximum too.

· The minimization problem can be unsolvable; the stationary condition can be solvable or not in this situation.

· The minimization problem can have many solutions; each solution satisfies the stationary condition.

· The stationary condition is applicable for the differentiable functions only. 
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Task. Minimization of function and stationary condition
	Variant
	Question 1
	Question 2

	
	Use the stationary condition
for the concrete function f.
Check the properties of the stationary points.
	Choose the function with
the given property. Note that
this result can be impossible.
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	The stationary condition
has a unique solution that is not a point of the minimum.
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	The stationary condition
does not have any solutions.

	3
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	The stationary condition
has two solutions, one of them it is the point of the minimum.

	4
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	The stationary condition

is the necessary and
sufficient of the minimum.
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	The stationary condition

has an infinite set of solutions.
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	The stationary condition
does not have any solutions but
the minimum of the function exists.
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	The stationary condition has three solutions: the local minimum, the local maximum and the absolute minimum.
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	The stationary condition has two solutions; it is the sufficient condition of minimum.

	9
	
[image: image61.wmf]42

()8

fxxx

=-+


	The stationary condition for the function with two points of the absolute minimum.

	10
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	The stationary condition has three solutions: the local minimum, the local maximum and the absolute maximum.

	11
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	The stationary condition
has two solutions, one of them it is the point of the maximum.
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	The stationary condition
does not have any solutions, but
the maximum of the function exists.

	13
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	The stationary condition is not applicable, but the maximum of the function exists.

	14
	
[image: image66.wmf]42

()181

fxxx

=-+-


	The stationary condition has two solutions; one of them is not the point of the minimum.

	15
	
[image: image67.wmf]432

()34122

fxxxx

=--+-


	The stationary condition is not the sufficient condition of the maximum.

	16
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	The stationary condition for a function with two point of the maximum.


Next step

The aim of our course is solving of extremum problems. The easiest extremum problem is the problem of the minimization for the function with one variable. We know the general method of function minimization now. Then we try to apply this result for solving problems of minimization of integral functionals.
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